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W. L. Briggs. A. C. Newell. and T. Sarie (J. Comput. Phys. 50, 83 (1983)) studied the
solutions of a class of discretizations of u, + au, + uu, =0, where “a” is a constant. They dis-
covered that the numerical solution of the discretization becomes unbounded despite the fact
that theoretically the solution should remain bounded. They attributed this anomalous
behavior to a focusing mechanism. In this paper we make use of a multiple scales analysis and
show that the instabilities are caused by a resonance effect introduced by the discretizations.
The contributions from the space and time discretizations are analysed separately and in
detail. Thus, the structure of the focusing mechanism becomes transparent.  C 1983 Academic

Press. Inc.

1. INTRODUCTION

The stability of nonlinear partial difference equations must be ranked as one of
the more important questions in numerical analysis. In this paper we are concerned
with difference schemes arising from discretizations of

u,+uu,=0. (1)

Despite significant progress on partial difference equations arising from (1) by
several people. including Richtmyer and Morton [7], Fornberg [27, Newell [67,
Briggs eral. [1], Sanz-Serna [8, 117, and Sloan and Mitchell {107, it is safe to say
that the stability of these difference schemes is not yet completely understood.

The earlier investigators already recognized that solutions of (1) which oscillate
around zero are particularly susceptible to instabilities. Let us now consider
solutions of (1) which are perturbations around the constant solution u=g; i.e.. let
us consider

u,+au,+uu, =0, {2}

where u is regarded as the perturbation and therefore considered to be small. In
addition we only consider 2n-periodic solutions of (2). i.e.,

ulx+ 2, ty=ulx, t).
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32 CLOOT AND HERBST

Introducing a uniform grid with grid length
h:=2n/N,
we follow Briggs et al. [1] and semi-discretize (2) by

. a 8 1-9
Uj+EI;(Uj+I - Uj-l)+ﬂl'(UT+l_ Uf_1)+'-2/;‘ UdU;y — Uj—l)zoa (3)

J
where
0<o<L
In order to ensure periodic solutions we impose the boundary conditions
Up=Uy, U=Upyy;.

For large values of U; in (3) the nonlinear terms will dominate which may result in
an explosive growth of the solution. If, on the other hand, U; is small, then
solutions of (3) are expected to behave rather like solutions of the linear poblem

. a
Uyt 5 (Uyy 1= Uy 1) =0 4)
which allqws solutions of the form
Uj — e;‘ (kx;— wi)

provided w satisfies the dispersion relation
a .
a)k=zsm(kh). (5)

Since we assume 2r-periodic solutions, k is an integer.
Briggs et al. [1] considered solutions of (3) of the form
U;=A(t) e +c. (6)
where c.c. indicates the complex conjugate of the preceeding terms. For k£ =1V,
A(t) and its complex conjugate A*(¢) are given by

/i(t)+£ka(1)=§;@,((2—39)A*(t)2. (7)

Briggs et al. solved (7) by the leapfrog or explicit midpoint rule for 6% and
obtained a threshold on the magnitude of the solution, if the solution is initially
below the threshold the solution remains bounded. However, if for some reason the
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solution exceeds this value the nonlinear processes dominate and the solution
rapidly becomes unbounded. Consult Sloan and Mitchell [10] for the connection
with the earlier work of Fornberg [2].

The situation becomes more complicated when we attempt to solve (3} with the
leapfrog scheme. Rather surprisingly the numerical experiments of Briggs er ol
showed that initial conditions which lead to bounded solutions in the case of {7)
may lead to unbounded solutions in the case of the partial difference scheme
obtained from (3). Their numerical experiments indicate that the Fourier modes in
the vicinity of the original or fundamental mode, %, first start to grow and from
these modes energy is fed into more modes until most or all modes are excited. In
physical space this causes the solution to develop sharp peaks at isolated positions.
As soon as a peak exceeds the threshold value the solution quickly becomes
unbounded. In their investigations into the origins of the instability Sloan and
Mitchell [10] did a Benjamin-Feir side-band analysis which led to necessary
conditions for the onset of the instability.

In this paper we are also concerned with the processes up to the stage where the
full nonlinear effects take over and the solution rapidly becomes unbounded.
Although the results of our investigations agree entirely with that of Sloan and
Mitchell, within the frameworks of the various limitations imposed by the techni-
ques employed, we believe that our investigations shed new light on the structure of
the mechanism responsible for the instability. The technique used in this paper was
inspired and resembies that used by Moore [5].

This paper is organized in two parts. In the first part we investigate the semi-
discrete system (3). The basic ideas needed for the second part are developed and
as a result we show that the semi-discrete system (3) does not become unstable. In
the second part we consider the leapfrog discretization of (3) and using the ideas
discussed in the first part we explain in some detail why the leapfrog time
discretization can become unstable.

I. SEMI-DISCRETIZATION

2. Wave-Train Solutions

In the previous section it was mentioned that (3) may admit solutions of the form
U;=¢(e’* =) + cc.) + O(e?), {8)

where w, satisfies the dispersion relation and ¢ < 1. More precisely, assume a steady
wave solution of (3) of the form

1 & .
l]=E Z al[e¢ f(kaA::'r)_‘_C.c‘]’ (9!

j ;
I=1

where ¢ and the g, are unknown.
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We emphasize that it is reasonable to expect solutions of this form only for small
U,. If we substitute (9) into (3) and gather coefficients of e*““¥~ <" we obtain the
following system of equations:

for I=1,
a . . 0 . d
—cai+ sin(kh) a, +§Z sin(kh) S; a.a;
-2 . . ~
5 Y. (sin((s+ 1) kh) —sin(skh)) a,a, , , = 0; (10a)
s=1
for I>1,

. 6 = :
__cla,+%sm(lkh)a,+zzsm(lkh)[Z aa, +2 3 asa,ﬂil
s=1 1

5=

__9 =1 oc
+—17[ Y. sin(skh)aa,_+ Y. (sin(_(/—l—s)kh)—sin(skh))asa,+j.i|=0.
-~ 1

5= s=1

(10b)

These equations may be solved by expanding a, and ¢ in Stokes fashion (Whitham
[12], Moore [5]),

a=3 &4,  I>1 (11)

This may now be used to calculate the solution (9). In particular this yields
¢=w+ 0(&?) (12)

with o, given by (5). However, we have no proof that (10) can actually be solved.
Henceforth we assume that (3) possesses a solution of the form (8) for e<1. For
any particular value of k this assumption should be verified numerically and an
upper bound on ¢ established.

3. Grid Resonances

Consider a solution T ; of (3) of the form (8) and let ¢, be a perturbation of U s
ie.,

szUj+¢j’ (13)
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where
(1L,2)N )
=& Y (a(t)e™taX()e ™),  {<e (14}
n=0

If (13} is substituted into (3) and linear terms in ¢, retained, it follows that

N a H ~ o \

¢j+ﬁ(¢j+1_¢j—1)+ﬂ(bvj+1 j+1"—Ujr~l¢j——lj
-0 . - N \ o
+—7h_(( U e+ U, —9,- =0 (1%

if we substitute (8) for Uj in (15) and (14) for ¢; and collect coefficients of ¢ *¥, we
obtain

G, +cw o, +ceCoe "o, +af )

+ceDge’ Mo, oaF_ ki) =0 {16)
where
C, =% (6 sin(sh) + (1 — 0)(sin(kh) + sin({s — k) 4))) (17a}
and
Dj=711 {0 sin(sh) — (1 — 0)(sin(kh) —sin{(s + k) &))). {(17b)

We cbserve that only those terms a,,, ¥ appear in {16) whose index # satisfics
0<n<iN.

For small values of ¢ we may follow the reasoning of Moore [5] and consider the
O(¢) terms in (16) to be source terms for the equation.

a,+rowu,=0. {18}
Thus, for those values of s in (16) for which either
O,=0+ 0, {19a)
or
W =0, -0 (19b)

the O(¢) terms in (16) will be-solutions of (18), ie., a, grows linearly in time. it is
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obvious that (19a) will be satisfied for s=k. For values of s in the vicinity of &
(19a) will be approximately satisfied, i.e.,

O;— W —W;
may be small and it is possible that this resonance will be strong enough to cause

linear growth in time. In the next section this situation will be analyzed, by using
the method of multiple scales in a similar fashion as Moore [5] did.

4. A Multiple Scales Analysis

Assume that for a certain value of s,

Cus—wk—ws—k:g(so (20)

where 6 = O(1). We are particularly interested in values of s close to £, ie.,

s=k+r and s=k—r,

where r is a small positive integer. If § in (20) is defined by

Wy, =0+ 0, +8d (21a)

then, if rh < 1, it follows from (5) and (20) that

Wy, =W, —w,— &0 (21b)

The following relations follow from (21) and are needed in the subsequent analysis,

wp=3(0x,,+wy ) (22)
0, = @0y~ @, _,)— 26 (220)
Op gy =0 + 3 Op 4, — O _,) (22¢)
W, =0 =304, —Of _,)- (22d)

According to the method of multiple scales, (see, e.g., Jeffrey and Kawahara [3])

a,= Y elai(T,, Ty, .0 (23)

where the slow time variables T, are given by

T.=¢  k=0,1,2,... (24)



LEAPFROG TIME DISCRETIZATIONS
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If {23) and (24) are substituted into (16) and use is made of {22), we obtain from

O(e) terms:
ot = Ay [Ty, Ty, ) e ikt el {252}
o =A, (T;, Ty, .)e < @D (25b}
al= AT, T,,..) e o, (25¢)
The O(&?) contribution is
du . doj, .
— 4t (ot w,) ok, A+ —FE 4
dTO ‘( k ) k+r dTl ¢ k+r
+ t'Ck+,e~"w"T°OC: +éDy e “kTog % 2k+r =0, {26a)
do? da, .
— (o~} +——"—0n)_,
ar, @ o) G e 0%,
+¢.Ck*re_rwkroa}*+l'Dk,,re!-wkTOa%V*f(zk*—r)=0 (26}”
do? do!
Yoy, ,—wp_,) a2+ —L— ;a)
dTo 62( k+r k ) r d]--1 r
+iC,e ™ Togi* 4+ /D,e gl =0. (26¢)

Recall that a “*” denotes the complex conjugate and we assumed that & is such that

0<N—(2k+r) <IN,

There is no loss of generality by this assumption.

If (25) is substituted into (26) the secular terms are removed by

dAiy, . .

—‘T;~T_+¢5Ak+r+ick+r‘4r=0

dd,_, . .

d;I —¢8A, _,+iC, ,A¥=0
dA4, . ) .
dTl~—¢5A,+4C,AZ.',,+4D,A/(+,=O.

It follows readily from (27) that A, ,, and 4,_, are of the form

AT
Ak +r € l,
where 4 is given by

12__{—(52+A)

=1_s2

{28}
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where

A=Ck+l'Dr_Ck~rCr' (29)

From (28) it is clear that a necessary condition for the side bands to grow exponen-
tially on the T, time scale, i.e., linearly on the / time scale, is

3*+4<0. (30)

This condition can only be satisfied if 4 <0 and together with (30) this provides an
upper bound on the value of 4. From (21) follows that an upper bound on ¢ implies
a lower bound on & Thus, in order to have instability on the T, time scales the
resonance needs to be strong enough and this is only possible if ¢, i.e., the amplitude
of the fundamental wave-train (8) is big enough. On the other hand, in Section 2 we
argued that ¢ needs to be small in order to have a wave-train solution. It is
therefore possible, that one condition may exclude the other, and as we show in
subsequent sections this indeed appears to be the case.

S. The Stability Condition

In order to analyze the meaning of the stability conditions (28) and (30), assume
rh<1
in which case

A=r*[(20+ 1)(1 —0) cos*(kh) + 2(20% — 20 + 1) cos(kh) + (20 - 1)(1 — 6)1. (31)

From (31) follows that (30) cannot be satisfied for small values of k. In fact all
values of & such that

2nk < N arc cos(y/2— 1) (32)

have 420 forall 0<0< 1. For kh <1 in (5), the numerical dispersion relation is a
good approximation of the corresponding linear one. In this case, (32) guarantees a
stable solution. The optimal value of 8, which according to (31) allows the least
number of potentially unstable modes is 8 ~0.7. This value is close to the value
0 =12 used by Briggs ez al. [1] for different reasons.

6. Examples

It is not easy to see if the two opposing conditions on ¢, namely ¢ smaller than a
threshold value to ensure a steady wave-train solution and ¢ bigger than a certain
value to provide strong enough resonances for instability, have any region of
overlap. In the present section we investigate specific examples.
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6.1. One Mode Solution

We return to the example of Section I. Ignoring for the moment the obvious
choice 6 =3 we follow Sloan and Mitchell [10] and set in (7)

A(ty=X{t)+  Y(1)

to obtain

X=0v+202-30)xy (33a)
a
) w 2 ~
Y= —0X+5 (2= 30) (X2~ ¥°) {33b)
pas)

where we used the simplified notation w instead of @, .1y.
Following standard practice, let
X(t)=e(1) cos(n(1)) {34a)
Y(t)=e&(1) sin(n(1)), {34b)

ie., we transform in phase-space to polar coordinates. It is now readily shown that

811) = 2 (2= 30) (1 *[3sin(n(r)) — 4 sin*(n(1)}] (35}
and
)= —w +§% (2—30) e(£)[4 cos®(n(t)) — 3 cos(n(t))]. (36}
Making use of an averaging procedure (Jordan and Smith [417), it follows that
e(t)=¢,+ 0(e?) {37a)
and
n(t) = —ot+ 0(e). {37b)

where g, is a small constant. Thus a solution of the form (8) with & =N has been
established.
We note that Sloan and Mitchell [10] proved

a
12— 30]

g0 < {38}

to be necessary and suffi¢ient to prevent nonlinear instabilities in this particular
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case. Clearly 8=2 places no restriction on g,. This is, of course, the choice for
which (33) becomes linear. In order to test the side-band instability conditions,
choose

N=120, k=40, 0=0, and a=0.5.

For r=1 we obtain 4 = —1.749 which implies ¢ > 0.58. This value of ¢ is prevented
by the nonlinear stability condition (38). Thus we conclude that the resonance
allowed by the nonlinear stability condition is not strong enough to cause side-
band instabilities.

For choices of k other than 1N we do not have an equivalent for (38) and it is
therefore difficult to tell if strong enough resonances are allowed within the non-
linear stability limit. In Table I we choose

N =120, 0=0, a=0.5, and r=1

and calculate the minimum value of ¢ required for resonance for various values of £.

From Table I it follows that fairly large values of ¢ are required to provide the
necessary resonance for instability, The numerical evidence we have for the
threshold required to prevent nonlinear instability appears to require values of ¢
less than those given in Table L

The same applies to other choices of 6. For instance, 6 =% and k = iN require no
restriction on ¢ to prevent nonlinear instability. However, in this case a value of
&¢>1.5 is required for side-band instabilities. Clearly this value falls outside the
range for which a multiple scales analysis applies, which forms the basis of the
estimate.

6.2. Two-Mode Solution

Aliasing may also be used to obtain a solution of the form
Uj(t)_:A(’)ez(l/4)NxJ+A*(t)e—-i(l/4)Nx,-+ B(t) ea’(l/Z)N.vcj’ (39)

where the complex function A4(¢) and the real function B(¢) satisfy

/i(t)+i%A(t)=% (1—20) 4%(1) B(1) (40a)
B() =3 (0~ D)(4%(0)~ 4¥(2)) (40b)
TABLE 1

Resonance Requirements for Various Values of &

k 25 30 35 40 45 50 55 60

Emin 0.59 0.51 0.53 0.58 0.62 0.67 0.70 0.71
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We note that (39) is not of the form (8), because of the presence of the 4N mode.
Also no theoretical results providing a threshold on the magnitude of the solution
(39) are available. However, a naive perturbation analysis gives

A(r)y =g WHNVG—wwand 4 ¢ ) + O(g?), {41a)
B(t) = ge’ ((WINm—wwanwd 4 g e )+ O(e?). (410}

As pointed out by Sloan and Mitchell [10], (40) becomes linear if 6 =1 which
implies that the O(g?) terms in (41) disappear. Assuming a steady wave-train of the
form

Uty =gl v —2u? pc.c.) + ge %~ o0 + O(?), R
{42}
ky=3N, ky=3N

for small values of g, the arguments leading to (28) may be repeated. Hence, we find
that the side bands in the vicinity of k, or k, will grow under the same conditions
as before. The general remarks made in connection with the previous example
therefore also apply to the present one.

II. DISCRETIZING THE TIME VARIABLE

7. The Leapfrog Scheme
We now proceed to discretize (3) by the leapfrog scheme,
Urt— U= (U, — Ur_ )+ 20U, )P — (U )D)
+y(1-0) UNUy, ,— U _)=0, {43)
where
y = At/h, o= ay,

and At denotes the fixed time step.
The dispersion relation pertaining to the linear equation

st - Up (U~ U ) =0 (44

is obtained by assuming a solution of the form

U'»' — ei (kx;— wty)
J

and is given by

sin(w, At)=a sin(kh). (45)
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This gives two values of w, for each k,

1
o} = arc sin(« sin(kh)) (46a)
, 1 N
w,;zz—;(n—dt Wy ) (46b}

The main, qualitative, difference between (45) and (5) lies in (46b). Waves travel-
ling at speeds according to this value of w, are of purely numerical origin and are
known as parasitic waves. It will be shown that these waves are the primary, but
not only, destabilising agent in (43).

8. Grid Resonances

We proceed as in Part I and assume a solution for (13) of the form
Ur=e ( 2 e kg —ain) ¢ c.c.) + O(g?). (47)
/=1

In order to keep our notation as simple as possible we prefer not to assign different
weights to the two waves /=1 and /=2 in (47), although the relative weights
depend on the way the starting values, U}, are provided in (43).

Assuming a perturbed solution of (43) of the form

Ur =01+ ¢, (48)

where ¢7 < (7]’.' and

(1/2)N

¢;1 — é Z (a;‘ei mx; +c.C. )’ 6 < g, (49)
m=10

we may substitute (48) into (43) to obtain to first order in ¢7,

¢;+1“¢}1~1+“(¢7H_ _?—1)+7’9((7}1+1 ,"’+1‘(77~1 ,"Ll)
+y(1=0)[(T2, =T ) g7+ U4}, — 97 )1=0. (50)

If we substitute (47) and (49) into (50) and collect coefficients of ¢**%, we obtain

(ar* P —ar =12 A1)+ cw,a”
2
+ceC, ( Y e*"“’i’") (o +of*,)
/=1

2
+ceD, ( ) eiwit") (05 e+ AN k19) =0, (51)
I=1
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where C, and D, are given by (17) and

w, = (a/h) sin(sh). {

LN
[\
p—

As before, we choose a (o), where 0 <g<3N.

In order to develop our intuition for the qualitative effect of the nounlinear
interaction, we again consider the O(g) terms in (51) to be source terms for the
homogeneous equation.

(ar* L — o = DY(2 Aty + Fw o = 0. {53}

The solution of {53) is of the form

where

sin(At 6,)= At w,. {

W
A
———

It is clear that (55) allows two values for 8., namely
0 =o', [=1,2,

where w! is given by (46).
Substituting (54) into the “source terms” in (51), we find that secular terms
appear and o, will grow linearly in time if

o"=0lt+owl_, {56a)
or

0T = —wL+ 0l ,, m, L, p=12. {56b}

The resonance condition (56a) is satisfied if

and
3=1iN; m=2; 1 p; and Lp=1,2 {578
Condition (56b) is satisfied if
s=3iN—k; m=2; i=1, p=2. {57¢)

It is already clear from gonditions (57b) and (57¢) that the two modes, N and
iN —k, should become unstable due to the numerical errors given by {(49). We also
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observe that these conditions can only be satisfied if both modes, /=1, 2, are
present. This prediction will be tested numerically in Section 10. First we investigate
the stability of the modes in the vicinity of the resonance conditions (57).

9. Formal Multiple Scales Analysis

Having extracted the essential information in the form of (56) and (57) from the
fully discrete dispersion relation (55), we now proceed to a formal multiple scales
analysis. For this purpose we define the leapfrog operator at a time ¢ as

o, U(t)=[U(t+ 4t) - U(r — 41)]/(2 41).

Furthermore, we expand

a(1)=Y al(T,, Ty, ..), (58a)

J
where the slow variables 7, are given by

T,=¢t, j=0,1,... (58b)

Schoombie [9] constructed discrete linear operators 0, satisfying

d,= Y o, (59)

j=0

In this paper we do not make use of the actual form of the discrete operators
appearing in (59). Instead, the qualitative features of the time discretization as
reflected in (56) and (57) are emphasized which allows us to treat the discrete
operators similar to their continuous counterparts. The quantitative features where
the structure of the operators appearing in (59) are taken into account will be
discussed elsewhere.

91 s=k+r

We first investigate resonances in the vicinity of £ and put
s=k+r
where r is small. The resonance conditions (56} become

Wy, , =0+l +ed, (60a)

wh_,=o,-o!l—-_, [=1,2. (60b)
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It also follows from (52) and (46) that

. o
Wexr =" [sin(w} + w!) 41 + &5, cos(w} +w!) At] (61a}

1 ) :
W= Lsin(Hw;, ,—wl_,) A1) —%e(8, + 8 _)cos(Y(wl _,~wi ) 41)]. (61b)

If we now substitute (58), (49), and (61) into (50) and proceed as in Part L it
follows that the secular terms at O(e?) are removed by the following equivalent of
{(27),

dAk+r

dT + Mk+r()+Ak+,+tC1\+,A —0 (623}
dd,_, . R , PPN
—J}T—ﬁM;,,o_Ak*,Jréck,,,Af:o (62b}
dA . \
L L MUS, +6_ ) A, +éC,AF_,+cD, A, ., =0, (62¢}

dT,

where

M, =cos((w} + w}) 41), {63a}
M!=cos((wh,,—wl _,) 41). (63b)

C; and D, are given by (17).
In order to solve (62) we make a few simplifying assumptions. Numerical
calculations show it to be reasonable to take, for rh <1,

0, =0_=9, M,

1 1 _
ker=M,_ =M, Mi=1.
If we now assume that A4, , , is of the form

Aki'rVee.AiTl7
it follows that
/1‘; F25(1— M) A% — {4+2M'6° — (1 - M"Y 6%} A%
F(M' —1)8(4+2M'? YA, + MISH(M'S* + A4) =0, (64)

where 4 is given by (29). This equation is readily solved to give

o
Ap={ —M's (65)
61— M) £ {6%(1 — MY + 4(4 + M'5%)} 2.
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The expression for A _ is obtained by substituting & with —4¢. It is clear that we will
have an instability on the 7', time scale if

531+ M')? + 44 <. (66)

This condition reduces to (30) if A#'= 1. A closer look at (63a) reveals that
oM <1, (67a)
M= —M' (67b)

For small values of «, roughly « <0.5, M'=1; for larger values of « there is a
significant decrease in the value of M* for most values of k. It is clear from (66) and
(60) that values of M’ less than 1 have a destabilizing effect, since it implies that
instability will occur for bigger values of d, hence for smaller values of .

If, in Part I, we needed

£> ¢
for instability, we now need (approximately)
e>H1+MYYe,. (68)

However, a more severe instability occurs in the case of the parasitic wave which
corresponds to the choice M? in (66). In this case the bound on ¢ becomes

e>41—-M')e,. (69)

Since M' may approach 1, (69) provides a bound on the amplitude which may be
well inside the limit imposed by the nonlinear instability condition.

92. s=iN—r
For values of s satisfying
s=iN-—r,
where r is small, let
O w7 = O+ Ol 2y s, — €D, (70)

where from (57b), /# p and /, p=1, 2. Proceeding in a similar way as before, we
obtain

dA(l/Z)N—r .

dT (OM | A(l,’Z)N7r+iC(l,"Z}N-rA([«'Z)N——(/c+r)=O (71a)
1
dA(l/Z)N—(k+ r)

dT +¢‘5M—A(l,r'2)l\/~(k+r)+‘.‘D(I/Z)N-(k+r)A(l/2)N~r:05 (71b)
1
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where
M | =cos((w} + ®f 21y - v ) A1)
M _ =cos{{wl —w?) A1)
Assuming
ATy

Aoy r~e ™

and similarly for A, 5,n _ 4 +,), it follows from (71) that the eigenvalues 4 for both
A aw-,and Aoy k. satisfy

A=(M, M )0+ {(M,+M_Y+4C n_Diogw—want > (72

B

R

Clearly we have instability on the T, time scale if

(M+ + M* )2 62 + 4C(1a'2)N*VD(I/Z)N—(/(JF,-) < 0’ {:?3\’
since C, > 0; instability will only occur if
Doyt +n<0. (74)

Thus we are again provided with a lower bound on & In Table II, this bound was
calculated using N=120,y=1,2=0.5, and r=1. We also used /=1 for k <iN and
1=2 for k> {N in (70), since these values correspond to the strongest resonance.

The final resonance condition (57¢) provides us with a system similar to {71), but
involving A, »,» ., and 4 2)a_ .. This shows that the instabilities in 4,5, .,
Aqan _k—r and Ay nyy iy, are connected. This will be verified numerically in the
next section.

10. Numerical Results

The numerical results given by Briggs ez al. [1] and Sloan and Mitchell {10]
illustrate many of our theoretical results. For instance, Sloan and Mitchell give

TABLE II

Minimum Values of ¢ Required for Instability

9
0 0.5
k
15 6.75x 1073 —
45 1.70x 10—# 23%x10°?

Note. There 15 no entry for k=15 and #=0.5, since
Dy; an ke + >0 for these values.

531,75/1-4
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(a)

(b)

FIG. 1. Solution and its Fourier transform after (a) 325, (b) 350.

numerical and theoretical evidence that the instability is related to the leap-frog
time discretization. They also show that the instabilities are absent if there is insuf-
ficient energy in the fundamental mode. Briggs eral. give extensive numerical
evidence of the destabilization of the modes in the vicinity of the fundamental mode
which formed the basis of the theoretical investigations of Sloan and Mitchell.

Hence, we concentrate on those results of our theoretical investigations which, in
our opinion, have not yet been fully appreciated. This will both serve as a
verification of our theoretical results and also improve our understanding of the
mechanism causing the instabilities. All the numerical experiments were done on a
Sperry Micro IT utilizing a 80287 coprocessor.

The resonance conditions (57b) and (57c) predict a growth in modes iN and
N —k. In order to test this prediction, we solve (43) numerically with N =120,
y=1, «a=0.9, and § =0. The initial condition is given by

UVW=Ul=lo(1+¢)e* +cc. (75)

with k= 4N and ¢ =0.05. Note that in these results no disturbances were added to
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FIG. | (continued). (c) 375, (d) 400 time steps using the initial condition (75).

stimulate any additional modes. The results after 325, 350, 375, and 400 time steps
are shown in Fig. 1. Note that in all our experiments we only show half of the
Fourier modes, the other half being symmetrical, After 325 time steps the modes iV
and IN —k appear, as predicted by (57b) and (57¢). After 350 time steps more
modes appear in the vicinity of the fundamental mode and the modes {N and
IN —k, as predicted by the multiple scales analysis of Section 9. From (62) we also
expect the low frequency modes to appear. Although these modes do not show up
in Fig. 1, they were observed in many of our experiments, cf. for instance, Fig. 2.

We observed in Section 7 that the main qualitative difference between the semi-
discrete equations (3) and the leapfrog system (43) is the parasitic wave allowed
by the latter. Also in Section 9, e.g., (69), we contributed the cause of instability
to the parasitic wave. Accordingly, we conducted numerical experiments with the
following initial conditions

U= Age ™ +cc. {76a)
Ul =r; dge'* +cc. (76b)
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(b)

(c)

FiG. 2. Solution and its Fourier transform after (a) 400, (b) 600, {c) 1000 time steps using the initial
condition (76).
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f16. 3 Solution and its Fourier transform after 1000 time steps using the initial condition (77

and
U= Ape’ ™ +cc. (77a)
Ul=r,dge"™+ce, {770}
where

AO:Z%O-(I +£)

i

ri = —cosin(kh) + (1 — o2 sin®(kh))'? (78a}

—ca sin(kh) — (1 —a? sin*(kh))12. (78b)

I

Fy'l

These initial conditions were obtained by applying the leapfrog scheme to the
linearization of (7), i.e.,, they were obtained from

A, 1— A, +2:0sin{kh) 4,=0. {79)
1t is easily seen that

A, =r A,

TABLE III

Minimum Values of ¢ Required for Instability for Different Values of »
(=0, N=120, a=0.5)

v H 2 3 4 5 6 7 8 9 16 il
ex 107 0.31 042 037 0.22 000 022 040 047 — — —
for k=150
ex 1073 0.28 046 057 061 0.59 0.53 043 031 0.16 000 033

for k=40
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eliminates the parasitic contribution from (79) and
A, =ry4,

eliminates the physical contribution from (79). Thus, (76) admits only a small
contribution from the parasitic wave and (77) only a small contribution from the
physical wave.

Figure 2 shows the results obtained from (76), the values of all the parameters
are as in Fig. 1. After 400 time steps there is no indication of any instability, as
compared to the significant instability observed at the same time in Fig. 1, where
both waves were present. From 600 to 1000 time steps the instability has developed
in much the same fashion as in Fig. 1. In this case, however, we do note the
appearance of low wave numbers. The instability need not surprise us; the choice
(76) does not remove all of the parasitic wave from the nonlinear problem.

Figure 3 shows the result obtained from (77) after 1000 time steps. Perhaps
surprisingly, there is no evidence of any instability. However, the meaning of (57b)
and (57c) is now clear. We need both waves for these resonance conditions to be
satisfied. The instability appears as a result of the resonance caused by an inter-
action of the two waves.

Finally we observe that our analysis may also be able to account for the obser-
vation of Sloan and Mitchell [2] that the most unstable side-mode is not
necessarily the one closest to the fundamental mode. In our terminology this means
that the modes with »=1 are not always the most unstable ones. Some indication
of this is obtained from (73). In Table IIl the bounds on the amplitude ¢ required
for instability for various values of r as calculated from (70) and (73), are shown.

11. Conclusions

We have demonstrated how the interaction between the physical wave and the
parasitic wave, arising from a leapfrog time discretization, may be responsible for
the instabilities described by Briggs et al. [1]. Although we believe this to shed
more light on the structure of the mechanism responsible for the instability, some
questions remain unanswered. For instance, our analyses are not sharp enough to
predict the time of the onset of the instability. As a result the significant difference
between the results obtained from (76) and (77) remains puzzling.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the financial support of the C.S.LR., Pretoria, for this research. We are
also grateful to Dr. Dave Sloan for his encouragement and many useful discussions as well as the
reviewers for their comments.

Note added in proof. We are now in a position to improve on the approximations made in the
multiple scales analyses. Hopefully this will remove some of the remaining puzzles.
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